NAME: ELENDU CHIDERA ISABELLA DEPARTMENT : COMPUTER ENGINEERING MATRIC NO: 15/ENG02/021 SUBJECT: ENG381

 $\frac{d^2y}{dx^2} - 4y = 10e^{8x}$ Answer m² - 4 = 0 $m^2 = 4 = m = \pm 54$ $m = \pm \mathbf{g}_{\mu}$ $\mathbf{y} = Ce^{3x}$ $\frac{dy}{dx} = 3Ce^{3x}$ d2y = 9 Ce 3x Substituting $9Ce^{3\pi} - 4Cce^{3\pi} = 10e^{3\pi}$ 9ce3x - 4ce3x = 10e3x 5 Ce 3x = 10 e 3x $\frac{C = LOe^{3x}}{5e^{3x}}$ C=211 · P. I = y= 2 e 32 9.5 = C.F + P.I $y = e^{2\pi} (A + B_{2c}) + 2e^{32c}$

3) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-2x}$ Answer m2 + 2m + 1 = 0 mª + 1m + 1m + 1=0 m (m+1)++(m+1)=0 (m+1) 20 + 108 ce m= -1 torce P.J 9= Ce-2x -2% dy = -2CR $\frac{d^2y}{dx^2} = 4 ce^{-2\beta}$ 4 Ce 2 + 2 (-2 Ce 2) + Ce = e 22 4 ce - 22 - 4 ce - 2x + ce - 2x = e - 2x Ce = e = 2x $C = l_{1}$ $P \cdot I = le^{-2x}$ Q.5 = C.F + P.I $y = e^{1x}(A + Bx) + 1e^{-2x}$

4) d 3 + 25y = 6x2 + x dx2) diff m = + 25 = 0 m° = -25 11) = +J-29 m= +35 " fiz)= 5x° + x PI= Cx2 + Dx + E dy = 20x+0 de dey dr2 $2c + 25(cx^2 + ox + e)=5x^2 + x$ $2c + 25cx^2 + 250x + 258 = 5x^2 + x$ $25(x^2 + 250x + 20 + 250 = 5x^2 + x)$ $25cx^2 = 5x^2$ 25c = 5 - ci) c= 5 - cib) 25Px = oc 250=1 10= 1/25 20+252 =0 2(15) + 25Ezo alto - real 2/5 + 258 =0 20 E= 2/5, E= 2/5, × 1/5 E= 00 2/12 YS P= 1/25

Cont.d $P.T = \frac{1}{5} \frac{\chi^2 + \frac{1}{2} \chi + \frac{1}{2}}{55} \frac{\chi + \frac{1}{25}}{125}$ Que = CF +P-I y= Acosnx + Bsennos $y = A\cos 5x + B\sin 5x + 1x^2 + 1x$ 5 25 + 2 125

5) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - \frac{y}{2} = 4s \cos x$ $m^2 - 2m + 1 = 0$ $m^2 - 1m - 1m + 1=0$ (m^2-im) $\overline{*}(im \overline{*}i) = 0$ m(m-1) +1(m-1)=0 (m-1) (m=1) =0 mi=1, m2=1 (troke) €(1) = 45cn x y= Ceosa + DSEna dy = BEAR + DEOSDE da $\frac{d^2y}{dx^2} = -(\cos x - \mathbf{D}\sin x)$ =) [- CCOSA - DSONA] -2 [-SMA + DCOSA] + [CCOSA + Osinx)= 4sinx =) (-C cosx - Dsona) +26cna - 20 cosa + Ceosa + Dsona = 4 singe LEKE terms 2) Cosa (- c + 20 + c) + since [-0+20 + p] z 4 sent 2) COSOC [-20] + SEAR [20] = 4500 comparing coefficient

$$\begin{array}{c} (3) - 20 = 0 - -(1) \\ D = - 9/2 = 0 \\ 0 = 0 \\ (2) 20 = 9 \\ (2) 20 \\ (2) 2 \\ (2)$$

y = e are (Accos + Bsing) 10 FCX) = 2R FRA / P-I: y= CR 2x dy = = 200 - 2% dx man a sont in a dey = 400 22 2200 2000 axi set [anta] 20 = p = 2 p 4Ce = + + [= 2Ce = 3x] + 3 [ce = 2x] = 2e = 2x 4 ce - 2x - 8 ce - 2x + 5 ce - 2x = 2e - 2x + 5 / 2 Cc 2 // P-I34=20-2x 0 2+ mp+ 5m Qt x=0, y=1 and pro-loally rates 1 = e=200) (ACOSCO) + BCOSCO) + 2e=20) 1=1 (A +0) +2 ILIEAt2 Desolt +- (A= -2+1 A = -12 11/12+-4 (d1 2=0, dy/0x = -2 dy/dx = -20-2x (-A sonx + B003x)-20-2x 2 = -2e -2(0) (-A SONCO) + BCOSCOJ) -2e 2(0) -2 = -2 Co tB) -2

$$\frac{-2}{-28-2}$$

$$\frac{-28}{-28} = \frac{-28}{-28}$$

$$B = \frac{9}{-2}$$

$$B = \frac{9}{-2}$$

$$\frac{9}{-28} = \frac{2^{-2}(-\cos x + \cos x + 2) + 2e^{-2x}}{-2}$$

$$\frac{9}{-28} = \frac{e^{-2x}(\cos x + 2e^{-2x})}{-28}$$

$$\frac{3}{-28} = \frac{2}{-28} = \frac{2}{-28}$$

$$\frac{3}{-28} = \frac{2}{-28}$$

$$\frac{3}{-28}$$

Bubstitue
B(0)
$$+ 200 - (cx + 0) = 2x - 3$$

 $0 - 2c - cx - 0 = 2x - 3$
 $-2c - 0 - cx = 2x - 3$
Comparing coefficients
 $-2c - 0 = -3$
 $-c = 2$
 $c = -2$
for $D_{-2}(-2) - 0 = -3$
 $4 - 0 = -3$
 $4 - 0 = -3$
 $4 + 3 = 0$
 $D = \frac{2}{10}$
P $T = y - 2x + 3$
 $Q.s = 2 C \cdot F + P \cdot F$
 $= y = Ae^{-1/3x} + Be^{x} + (-20c + 3)$
 $= Ae^{-1/3x} + Be^{x} = -2x + 3$

$$\frac{9}{3x^2} \frac{d^2y}{dx} - \frac{64y}{2x} + \frac{3}{2}\frac{y}{2x} - \frac{2}{2x^{4/2}}$$

$$\frac{34x^2}{3x^2} - \frac{44x}{3x} + \frac{3}{2}\frac{2}{2x^{4/2}}$$

$$\frac{34x^2}{3x^2} - \frac{44x}{4x} + \frac{4}{20}$$

$$\frac{10x^2 - 24x}{4x^2} + (-4xx + 4x) = 0$$

$$\frac{10x^2 - 24x}{4x^2} + (-4xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-4xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-4xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-4xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-4xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-4xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-2xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-2xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-2xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-2xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-2xx + 4x) = 0$$

$$\frac{10x^2 - 2x^2}{4x^2} + (-2xx + 4x) = 0$$